Geology and Geochronology of Oracle, Arizona

Alexus Wuertemburg, Mauricio Ibañez-Mejia, Clay Campbell, Michelle L. Foley, Wai Allen

Acknowledgements

ARIZONA LASERCHRON CENTER

Department of Geosciences University of Arizona

A-Type Granite

The Oracle intrusion is a 1.4 Ga Anorogenic granite located in the Transcontinental belt.

Why is this Important?

live on.

- A-Type granite is fundamental to understanding crustal evolution.
- **Oracle granite is the crust we**
- It was the foundation for the later tectonic events in the Tucson area.

Project Hypothesis

Different outcrops may produce different ages.

Known: One age at 1.4 Ga

Hypothesis: Multiple magma bodies

Zircon **ZrSiO**₄

Zircon is very resilient to alternation.

Cathodoluminescence Image (CL Image)

Over time, Zircon incorporates Uranium and it excludes Lead as it's growing from a melt.

Zircon U-Pb: How it works?

The pace of radioactive decay

'Parent' ²³⁸U & ²³⁵U 'Daughter' ²⁰⁶Pb & ²⁰⁷Pb

7 x ⁴He

Personal Communication Mauricio

Methods Part 1: Fieldwork

Collected samples in the field from two units

Intact Oracle Sample C2C-AW-3

Crumbly Oracle Sample C2C-AW-5

Methods Part 2: Zircon Separation

Crushing Panning

3 **Heavy Liquids**

Frantz

Methods Part 3: Zircon Analyses

5 Mounting

7 CL and BSE Imaging

8 Mass Spectrometer

Intact Oracle Sample **C2C-AW-3** 1446±16 Ma

Crumbly Oracle Sample C2C-AW-5 1435±14 Ma

mean = 1435.08±9.90 Ma(39/43) MSWD = 0.49, $p(\chi 2) = 1$

Oracle Granite: Two ages versus one?

What's next?

Continue work in the fall

Hafnium and Trace Elements

References

ANDERSON, J. (1983). PROTEROZOIC ANOROGENIC GRANITE PLUTONISM OF NORTH AMERICA. GEOLOGICAL SOCIETY OF AMERICA MEMOIRS, 133–154. HTTPS://DOI.ORG/10.1130/MEM161-P133

FORNASH, K. F., P. JONATHAN PATCHETT, GEHRELS, G. E., & SPENCER, J. E. (2013). EVOLUTION OF GRANITOIDS IN THE CATALINA METAMORPHIC CORE COMPLEX, SOUTHEASTERN ARIZONA: U-PB, ND, AND HF ISOTOPIC CONSTRAINTS. 165(6), 1295–1310. HTTPS://DOI.ORG/10.1007/S00410-013-0859-4

GLAZNER, A. F., & BARTLEY, J. M. (1984). TIMING AND TECTONIC SETTING OF TERTIARY LOW-ANGLE NORMAL FAULTING AND ASSOCIATED MAGMATISM IN THE SOUTHWESTERN UNITED STATES. TECTONICS, 3(3), 385–396. HTTPS://DOI.ORG/10.1029/TC003I003P00385

KEITH, S. B., REYNOLDS, S. J., DAMON, P. E., M. SHAFIQULLAH, LIVINGSTON, D. E., & PUSHKAR, P. (1980). EVIDENCE FOR MULTIPLE INTRUSION AND DEFORMATION WITHIN THE SANTA CATALINA-RINCON-TORTOLITA CRYSTALLINE COMPLEX, SOUTHEASTERN ARIZONA. 217–267. HTTPS://DOI.ORG/10.1130/MEM153-P217

